Intuitive node definition with a cartesian or cylindrical coordinate system. Various automated nodes generation options, including imported DXF files (CAD). Rigid-link or non-linear gap can be used to define non-conventional relationships between nodes.
STRAP will automatically generate wind and seismic loads according to many design codes. Additionally, a sophisticated moving load generator allows the user to apply moving loads on frame and shell elements. Automatically generated Chess loading for beam elements.
STRAP solvers have been tested by industry professionals for more than 35 years. Extremely fast analysis time can be achieved by utilizing quad core, 64-bit processors.STRAP is capable of performing both linear static analysis, as well as, multi-step static analysis. linear static analysis engage a solution of a model with linear equations represented by K*U=R, where K=stiffness matrix, U=displacement vector, and R=force vector. Multi-step analysis is performed for multi-stepped load patterns such as, moving loads, vehicle loads, etc. the program will automatically generate load cases for each pattern and apply the loads in sequence.
Graphic results are displayed on screen and include internal forces (moment,shear, axial, etc.), displacements, stresses, and reactions. For shell elements results can be displayed as a contour map, at element centers or “a long a line”. In addition to the ordinary analysis result types, STRAP also enables you to display results required for design, e.g. reinforcement area in concrete elements or design moments in slabs that account for the Mxy moments.
Design reinforced concrete frames, slabs, and walls according to code requirements (ULS/SLS) including: required area of main steel reinforcement, shear reinforcement, deflection, etc. Seismic design requirements are accounted for where applicable. Beam and column detailing are available, and can be assigned to layout for printing or exporting for a DXF file (CAD).
Design hot-rolled, welded or cold-formed steel frames according to code requirements (ULS/SLS). Combined sections of any shape and form can be designed, as well as castellated/cellular members. STRAP can determine buckling/LTB effective length and deflection control length automatically or by user defined options. In addition, STRAP can perform optimization of steel sections based on analysis results or based on sway control. The optimization process helps to shorten the time of achieving economical and practical design. Composite steel/concrete Column or beams design are also available.